Abstract

Physiological sensing deep in tissue remains a clinical challenge. Here a flexible miniaturised sensing optrode providing a platform to perform minimally invasive in vivo in situ measurements is reported. Silica microspheres covalently coupled with a high density of ratiometrically configured fluorophores were deposited into etched pits on the distal end of a 150 µm diameter multicore optical fibre. With this platform, photonic measurements of pH and oxygen concentration with high precision in the distal alveolar space of the lung are reported. We demonstrated the phenomenon that high-density deposition of carboxyfluorescein covalently coupled to silica microspheres shows an inverse shift in fluorescence in response to varying pH. This platform delivered fast and accurate measurements (±0.02 pH units and ±0.6 mg/L of oxygen), near instantaneous response time and a flexible architecture for addition of multiple sensors.

Highlights

  • Alterations in the physiological environment in tissues can drastically impact biological processes

  • The platform consists of novel pH sensors and oxygen sensors[1] covalently attached to silica microspheres (10 μm diameter) loaded into pits etched into the distal facet of a 19 core (10 μm core diameter) multicore fibre

  • Following the pioneering work of Walt[2], fluorescent reporters covalently coupled to 10 μm amino modified silica microspheres were used as an optically robust solution to enable in vivo multiplexed pH and oxygen sensing

Read more

Summary

Introduction

Alterations in the physiological environment in tissues can drastically impact biological processes. Despite the presumption of tightly regulated levels of key physiological parameters such as [H+] and oxygen, in many areas of the human body the environmental physiology is unknown due to the paucity of miniaturised clinically compatible technologies. The aim of this study was to develop a flexible microendoscopic optrode for the accurate, robust and multiplexed sensing of pH and oxygen, which could be passed into remote regions of the human body. We demonstrate in this study that the distal alveolar acinar gas exchanging units of the lung can be accessed, where pH and oxygen play a critical role in maintaining homeostasis and are potential biomarkers of pathological processes, clearly the platform technology is widely applicable to other regions. Fluorescence is excited through selective coupling of light to a single core at the proximal end of the fibre, from which the spectrum is measured, enabling multiplexing of sensors across the multi-core fibre

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.