Abstract

Abstract Direct numerical simulations of incompressible turbulent forced convection over irregular, anisotropic surface roughness in a pressure-driven plane channel flow have been performed. Heat transfer was simulated by solving the passive scalar transport equation with Prandtl number Pr = 0.7. The roughness topographies under investigation here are based on an X-ray computed tomography scan of an additively manufactured internal cooling passage, which had an irregular, multiscale and mildly non-Gaussian height distribution. Three different roughness topographies and three different friction Reynolds numbers (Reτ = 395, 590, 720) were considered, along with reference smooth-wall simulations at matched Reτ. By systematically varying the roughness topography and flow conditions, a direct computational assessment of aero-thermal performance (pressure losses and heat transfer) and the Reynolds analogy factor, i.e., 2Ch/Cf, where Ch is the heat-transfer coefficient (Stanton number) and Cf is the skin-friction coefficient, was conducted. The results highlight the profound impact that the roughness orientation (relative to the flow direction) has upon the aero-thermal performance of additively manufactured internal passages, with transverse-aligned roughness augmenting heat transfer by as much as 33%, relative to its streamwise-aligned counterpart. An interrogation of velocity and temperature statistics in the near-wall region was also performed, which underlined the growing dissimilarity between heat transfer and drag as fully rough conditions are approached.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call