Abstract

In aero-engine bearing chambers, two-phase shearing flows are difficult to predict as Computational Fluid Dynamics (CFD) RANS models tend to overestimate interfacial turbulence levels, leading to inaccuracies in the modelling of the flow. Turbulence damping methods have been developed to address this problem, such as Egorov’s correction, however, this method is mesh dependent and results differ considerably according to the choice of turbulence damping coefficient. In addition, this approach assumes a smooth interface between the air and oil phases when in reality they are wavy. In this paper, a Machine Learning method is used to inform an unsteady RANS turbulence modelling. It is trained using high fidelity quasi-DNS simulation data and used to provide an appropriate correction to the popular Wilcox’s standard RANS <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mi>ω</mml:mi></mml:math></inline-formula> turbulence model. The correction consists of a machine learning-predicted source term which is used to adjust the energy budget in the RANS transport equations. Demonstration of the approach is presented for a range of interfacial flow regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call