Abstract

Human-friendly electronic products, such as smart mobile phones, soft haptic devices, wearable electronics, and implantable or disposal biomedical devices, will require the use of high-performance durable soft electroactive actuators with eco-friendly, biocompatible, and biodegradable functionalities. Here, we report a high-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose (CBC) membranes fabricated using the facile zinc oxide (ZnO) particulate leaching (PL) method. The proposed CZ-PL muscular actuator exhibits large deformation, low actuation voltage, fast response, and high-durability in open air environment. In particular, the CZ-PL membrane shows a dramatic increase in the ionic liquid uptake ratio, ionic exchange capacity, and ionic conductivity of up to 70.63%, 22.50%, and 18.2%, respectively, for CBC, resulting in a 5.8 times larger bending deformation than that of the pure CBC actuator. The developed high-performance CZ-PL muscular actuator can be a promising candidate for meeting the tight requirements of human-friendly electronic devices such as wearable devices, biomimetic robots, and biomedical active devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call