Abstract

In vivo iron levels can be adjusted through intestinal iron absorption to be maintained at a suitable level; however, optimal iron levels in hemodialysis (HD) patients are unclear. In this study, we investigated total body iron (TBI), calculated as the sum of red blood cell (RBC) iron and iron stores, during courses of low-dose oral iron replacement therapy, and evaluated in vivo iron sufficiency and its indicators in HD patients. We analyzed data on 105 courses of low-dose iron replacement therapy administered to 83 patients on maintenance HD over 7 months. We evaluated changes in TBI, RBC iron, and iron stores from the initiation of treatment to month 7 in two groups of patients, namely, iron-therapy responders and non-responders. TBI showed significant increases until month 4 and plateaued thereafter in iron-therapy responders, and tended to increase and then reached a similar plateau in non-responders (month 7: 1900 ± 447 vs. 1900 ± 408 mg). Steady-state TBI was strongly correlated with body surface area (y = 1628.6x - 791.91, R2 = 0.88, p < 0.001). We observed constant TBI during oral iron replacement therapy suggesting the activation of a "mucosal block". The results suggest that body surface area has utility for estimating the required TBI with regression equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call