Abstract

High Fe concentrations (up to 2×1019 cm-3) have been implanted in n-doped InP to compensate the substrate donors. The resulting semi-insulating layers have been investigated by current–voltage (I-V) measurements and photo-induced current transient spectroscopy (PICTS) analyses to characterise the Fe activation process and to study the Fe related deep levels. The activation of the Fe2+/3+ trap has been assessed by the identification of the deep level located at EC-0.64 eV. The outcomes of the PICTS measurements have been correlated with the electrically active Fe concentration calculated from a numerical simulation of the I-V characteristics. We observe an increasing linear relation between the electrically active Fe concentration and the substrate doping density, with a maximum active Fe concentration as high as 2×1018 cm-3, i.e. more than an order of magnitude above the equilibrium Fe solid solubility. These data are presented and their implications discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.