Abstract
Research shows that rats and humans on a high-fat diet (HFD) are less sensitive to satiety signals known to act via vagal afferent pathways. We hypothesize that HFD causes an upregulation of 2-pore domain potassium channels, resulting in hyperpolarization of nodose ganglia (NG) and decreased vagal response to satiety signals, which contribute to hyperphagia. We show that a 2-week HFD caused an upregulation of 2-pore domain TWIK-related spinal cord K+ (TRESK) and TWIK-related acid-sensitive K+ 1 (TASK1) channels by 330% ± 50% and 60% ± 20%, respectively, in NG. Patch-clamp studies of isolated NG neurons demonstrated a decrease in excitability. In vivo single-unit NG recordings showed that a 2-week HFD led to a 55% reduction in firing frequency in response to CCK-8 or leptin stimulation. NG electroporation with TRESK siRNA restored NG responsiveness to CCK-8 and leptin. Rats fed a 2-week HFD consumed ~40% more calories compared with controls. Silencing NG TRESK but not TASK1 channel expression in HFD-fed rats restored normal calorie consumption. In conclusion, HFD caused upregulation of TRESK channels, resulting in NG hyperpolarization and decreased vagal responsiveness to satiety signals. This finding provides a pharmacological target to prevent or treat HFD-induced hyperphagia.
Highlights
High-fat diet–induced vagal afferent dysfunction via upregulation of 2-pore domain potassium TRESK channel Gintautas Grabauskas, Xiaoyin Wu, ShiYi Zhou, JiYao Li, Jun Gao, and Chung Owyang Original citation: JCI Insight
The Methods section incorrectly indicated the manufacturer and catalog number for the TRESK antibody used for immunocytochemistry
The online version of the article has been updated with the corrected information
Summary
High-fat diet–induced vagal afferent dysfunction via upregulation of 2-pore domain potassium TRESK channel Gintautas Grabauskas, Xiaoyin Wu, ShiYi Zhou, JiYao Li, Jun Gao, and Chung Owyang Original citation: JCI Insight.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.