Abstract
Little is known about how obesity affects the heart during sepsis and we sought to investigate the obesity-induced cardiac effects that occur during polymicrobial sepsis. Six-week old C57BL/6 mice were randomized to a high fat (HFD) (60% kcal fat) or normal diet (ND) (16% kcal fat). After 6weeks of feeding, mice were anesthetized with isoflurane and polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Plasma and cardiac tissue were obtained for analysis. Echocardiography was performed on a separate cohort of mice at 0 and 18h after CLP. Following 6-weeks of dietary intervention, plasma cardiac troponin I was elevated in obese mice at baseline compared to non-obese mice but troponin increased only in non-obese septic mice. IL-17a expression was 27-fold higher in obese septic mice versus non-obese septic mice. Cardiac phosphorylation of STAT3 at Ser727 was increased at baseline in obese mice and increased further only in obese septic mice. Phosphorylation of STAT3 at Tyr705 was similar in both groups at baseline and increased after sepsis. SOCS3, a downstream protein and negative regulator of STAT3, was elevated in obese mice at baseline compared to non-obese mice. After sepsis non-obese mice had an increase in SOCS3 expression that was not observed in obese mice. Taken together, we show that obesity affects cardiac function and leads to cardiac injury. Furthermore, myocardial injury in obese mice during sepsis may occur through alteration of the STAT3 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et biophysica acta. Molecular basis of disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.