Abstract
Genetic and environmental factors mediate via different physiological and molecular processes a shifted energy balance leading to overweight and obesity. To get insights into the underlying processes involved in energy intake and weight gain, we compared hypothalamic tissue of mice kept on a high-fat or control diet for 10 days by a proteomic approach. Using two-dimensional difference gel electrophoresis in combination with LC-MS/MS, we observed significant abundance changes in 15 protein spots. One isoform of the protein DJ-1 was elevated in the high-fat diet group in three different mouse strains SWR/J, C57BL/6N, and AKR/J analyzed. Large-scale validation of DJ-1 isoforms in individual samples and tissues confirmed a shift in the pattern of DJ-1 isoforms toward more acidic isoforms in several brain and peripheral tissues after feeding a high-fat diet for 10 days. The identification of oxidation of cysteine 106 as well as 2-succinyl modification of the same residue by mass spectrometry not only explains the isoelectric shift of DJ-1 but also links our results to similar shifts of DJ-1 observed in neurodegenerative disease states under oxidative stress. We hypothesize that DJ-1 is a common physiological sensor involved in both nutrition-induced effects and neurodegenerative disease states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.