Abstract
Epidemiological evidence has demonstrated a clear association between diabetes mellitus and increased risk of Alzheimer's disease (AD). Cerebral accumulation of phosphorylated tau aggregates, a cardinal neuropathological feature of AD, is associated with neurodegeneration and cognitive decline. Clinical and experimental studies indicate that diabetes mellitus affects the development of tau pathology; however, the underlying molecular mechanisms remain unknown. In the present study, we used a unique diabetic AD mouse model to investigate the changes in tau phosphorylation patterns occurring in the diabetic brain. Tau-transgenic mice were fed a high-fat diet (n = 24) to model diabetes mellitus. These mice developed prominent obesity, severe insulin resistance, and mild hyperglycemia, which led to early-onset neurodegeneration and behavioral impairment associated with the accumulation of hyperphosphorylated tau aggregates. Comprehensive phosphoproteomic analysis revealed a unique tau phosphorylation signature in the brains of mice with diabetic AD. Bioinformatic analysis of the phosphoproteomics data revealed putative tau-related kinases and cell signaling pathways involved in the interaction between diabetes mellitus and AD. These findings offer potential novel targets that can be used to develop tau-based therapies and biomarkers for use in AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.