Abstract

As the global population ages, and rates of dementia rise, understanding lifestyle factors that play a role in the development and acceleration of cognitive decline is vital to creating therapies and recommendations to improve quality of later life. Obesity has been shown to increase risk for dementia. However, the specific mechanisms for obesity-induced cognitive decline remain unclear. One potential contributor to diet-induced cognitive changes is neuroinflammation. Furthermore, a source of diet-induced inflammation to potentially increase neuroinflammation is via gut dysbiosis. We hypothesized that a high fat diet would cause gut microbe dysbiosis, and subsequently: neuroinflammation and cognitive decline. Using 7-month old male Sprague Dawley rats, this study examined whether 8 weeks on a high fat diet could impact performance on the water radial arm maze, gut microbe diversity and abundance, and microgliosis. We found that a high fat diet altered gut microbe populations compared to a low fat, control diet. However, we did not observe any significant differences between dietary groups on maze performance (a measure of spatial working memory) or microgliosis. Our data reveal a significant change to the gut microbiome without subsequent effects to neuroinflammation (as measured by microglia characterization and counts in the cortex, hippocampus, and hypothalamus) or cognitive performance under the parameters of our study. However, future studies that explore duration of the diet, composition of the diet, age of animal model, and strain of animal model, must be explored.

Highlights

  • The prevalence of obesity among US adults is above 36%, and has been rising significantly since the 1980s [1]

  • The current study measured the change in gut microbes following consumption of a high-fat or control diet, performance on the water radial arm maze, and Iba-1 immunohistochemistry in three relevant brain regions

  • Our study demonstrates diet-induced gut dysbiosis without working memory deficits under the parameters of this study

Read more

Summary

Introduction

The prevalence of obesity among US adults is above 36%, and has been rising significantly since the 1980s [1]. Diet is a significant lifestyle factor in the development of diabetes, hypertension, heart disease, and obesity. The Western Diet is characterized by high saturated fat, cholesterol and simple sugar content [2,3,4]. High fat diet alters gut microbiota but not spatial working memory collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.