Abstract

Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.

Highlights

  • Fatty acids (FAs) are structural components of organs, energy sources, precursors of bioactive compounds such as eicosanoids, including prostacyclins, prostaglandins, thromboxanes, and leukotrienes

  • The ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) families are synthesized from their essential fatty acids (EFAs), namely α-linolenic acid and linoleic acid (LA, 18:2 ω-6), respectively. αLA and LA cannot be synthesized de novo [1] and are, supplied in the diet [2]

  • The present rodent study sought to determine the effects of high fat diets (HFDs) administration during specific periods of gestation on maternal lipid profiles, since we recently described its consequences on the availability of FAs to the fetus [16]

Read more

Summary

Introduction

Fatty acids (FAs) are structural components of organs, energy sources, precursors of bioactive compounds such as eicosanoids, including prostacyclins, prostaglandins, thromboxanes, and leukotrienes. All FAs provide energy, whereas polyunsaturated fatty acids (PUFAs) are required for structural and metabolic functions. The ω-3 and ω-6 PUFA families are synthesized from their essential fatty acids (EFAs), namely α-linolenic acid (αLA, 18:3 ω-3) and linoleic acid (LA, 18:2 ω-6), respectively. ΑLA and LA cannot be synthesized de novo [1] and are, supplied in the diet [2]. ΑLA is abundant in seed oils and is the precursor of eicosapentanoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3) [1]. Important PUFAs during development are AA, EPA, and DHA which

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call