Abstract

Compared with the conventional strip waveguide, subwavelength grating (SWG) waveguide has an enhanced evanescent field penetrating deeper within the upper cladding and the propagation direction, and an increased light-matter interaction can be achieved, resulting in a larger optical loss simultaneously. We experimentally demonstrate a subwavelength grating ring resonator around 1310nm. In order to reduce the influence of optical loss in the subwavelength bus waveguide and ring waveguide, we optimized the ring resonator by scanning the gap between the ring resonator and bus waveguide when the silicon duty cycle is fixed. The results experimentally show that the maximum extinction ratio of 18.8 dB when the gap and silicon duty cycle are equal to 120 nm and 0.7 around 1310nm. The extinction ratio has a 4.2dB larger than that for the resonance around 1550nm, which marks an increase of 28.7% compared to the C-band micro-ring sensors, thus showing a potential for bio-sensing applications in Lab-on-Chip system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.