Abstract

In a parallel-coupled dual-racetrack modulator, resonant light in two resonators can interfere with each other. In lieu of critical coupling, such interference is capable of producing high extinction ratios (ERs) for high-speed modulation. Experiments demonstrate ERs of over 9 dB at 50 Gb/s and 40-50% modulation depth enhancement compared with a single-resonator modulator at 50-56 Gb/s with a peak-to-peak driving voltage of 2.3 V. Furthermore, joint modulation of two racetracks offers the possibility to combine two separate bits of driving signals to generate four-level pulse-amplitude modulation (PAM-4) without an external digital-to-analog converter (DAC). To tackle the complex multi-variable transfer function of this modulator, a procedure for configuring PAM-4 states is theoretically developed. Finally, we demonstrate 100 Gb/s PAM-4 with an electro-optic modulation power consumption of < 40 fJ/bit for this device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.