Abstract

AlGaN-based UV-A LEDs have wide applications in medical treatment and chemical sensing; however, their efficiencies are still far behind visible LEDs or even shorter wavelengths UV-C counterparts because of the large lattice mismatch between the low-Al-content active region and the AlN substrate. In this report, we investigated the composition and thickness of the quantum barrier in the active region in terms of LED performance. Due to the improved strain management and better carrier confinement, efficient UV-A LEDs (320 nm - 330 nm) with EQEs up to 6.8% were demonstrated, among the highest efficiencies at this wavelength range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call