Abstract

BackgroundHuman Leukocyte Antigen (HLA)-E is a non-classical class I HLA molecule that can be stabilized by ligands donated by other classical (HLA-A, -B, -C) and non-classical (HLA-G) family members. HLA-E engages a variety of immune receptors expressed by cytotoxic T lymphocytes (CTLs), Natural killer (NK) cells and NK-CTLs. In view of the opposing outcomes (activation or inhibition) of the different HLA-E receptors, the preferred role (if any) of HLA-E expressed in vivo on tumor cells remains to be established.MethodsTaking advantage of MEM-E/02, a recently characterized antibody to denatured HLA-E molecules, HLA-E expression was assessed by immunohistochemistry on an archival collection (formalin-fixed paraffin-embedded) of 149 colorectal primary carcinoma lesions paired with their morphologically normal mucosae. Lymphoid infiltrates were assessed for the expression of the HLA-E-specific, inhibitory, non-rearranging receptor NKG2A.ResultsHigh HLA-E expression did not significantly correlate with the expression of classical HLA-B and HLA-C molecules, but it did correlate with high expression of its preferential ligand donor HLA-A. In addition, it correlated with lymphoid cell infiltrates expressing the inhibitory NKG2A receptor, and was an independent predictor of good prognosis, particularly in a subset of patients whose tumors express HLA-A levels resembling those of their paired normal counterparts (HLA-A). Thus, combination phenotypes (HLA-Elo-int/HLA-AE and HLA-Ehi/HLA-AE) of classical and non-classical class I HLA molecules mark two graded levels of good prognosis.ConclusionsThese results suggest that HLA-E favors activating immune responses to colorectal carcinoma. They also provide evidence in humans that tumor cells entertain extensive negotiation with the immune system until a compromise between recognition and escape is reached. It is implied that this process occurs stepwise, as predicted by the widely accepted 'immunoediting' model.

Highlights

  • Human Leukocyte Antigen (HLA)-E is a non-classical class I HLA molecule that can be stabilized by ligands donated by other classical (HLA-A, -B, -C) and non-classical (HLA-G) family members

  • We showed that early-passage melanoma, breast carcinoma, and lung carcinoma cells, like virus-infected cells, avoid both extremes of overly low or high HLA class I expression, which would expose them to lysis by Natural killer (NK) and cytotoxic T lymphocytes (CTLs), respectively

  • Since HLA-E ligands donated by most HLA-B and at least some HLA-C alleles are poorer NKG2A inhibitors than those donated by HLA-A alleles [27], in vitro mechanisms of ligand donation and HLA-E stabilization appear to be recapitulated in vivo

Read more

Summary

Introduction

Human Leukocyte Antigen (HLA)-E is a non-classical class I HLA molecule that can be stabilized by ligands donated by other classical (HLA-A, -B, -C) and non-classical (HLA-G) family members. Similar ‘low profile’ HLA phenotypes were observed in vivo, in colorectal carcinoma lesions, and were associated with a favorable prognosis, whereas extreme down-and up-regulation with respect to the normal autologous mucosa were rare and associated with a poor prognosis, when involving the HLA-A locus [16]. These altered HLA phenotypes mark tumor cells refractory to immune elimination

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.