Abstract
The fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) is responsible for excellent light-harvesting strategies that enable survival in fluctuating light conditions. Here, we report the light-harvesting and quenching states of two FCP complexes, FCP-A and FCP-B/C, isolated from the diatom Chaetoceros gracilis. Pigment analysis revealed that FCP-A is enriched in Chl c, whereas FCP-B/C is enriched in diadinoxanthin, reflecting differences in low-temperature steady-state absorption and fluorescence spectra of each FCP complex. Time-resolved fluorescence spectra were measured at 77 K, and the characteristic lifetimes were determined using global fitting analysis of the spectra. Tens of picosecond (ps) components revealed energy transfer to low-energy Chl a from Chls a and c, whereas the other components showed only fluorescence decay components with no concomitant rise components. The normalized amplitudes of hundreds of picosecond components were relatively 30% in the total fluorescence, whereas those of longest-lived components were 60%. The hundreds of picosecond components were assigned as excitation energy quenching, whereas the longest-lived components were assigned as fluorescence from the final energy traps. These results suggest that 30% of FCP complex forming quenching state and the other 60% of FCP complex forming light-harvesting state exist heterogeneously in each FCP fraction under continuous low-light condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.