Abstract

AbstractHigh‐entropy ceramics have been widely explored and extensively studied since the first demonstration of the configuration entropy stabilized reversible transitions between multiple and single phases by Rost et al. in 2015. Most of the current research on high‐entropy ceramics has focused on properties like thermal conductivity, thermoelectricity, structures, and others. Some recent studies have extended the high‐entropy concept to the field of transparent ceramics. We reviewed these papers and proposed four potential ceramics groups for high‐entropy transparent ceramics including fluoride ceramics, fluorite‐deficient and/or ordered pyrochlore A2B2O7 ceramics, garnet ceramics, and sesquioxide ceramics. In this article, we review ceramic powder synthesis, the fabrication of transparent ceramics, high‐entropy ceramics, and limited cases of high‐entropy transparent ceramics for each category. High‐entropy transparent ceramics with diverse compositions and structures will provide more possibilities for functional transparent ceramics in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.