Abstract

Developing high-performance infrared radiation ceramic materials with desired broadband emissivity while reducing thermal conductivity to prevent heat transfer is highly desirable for emerging industrial and aerospace applications. Nevertheless, it remains a grand challenge to simultaneously meet these requirements in existing infrared radiation ceramic materials. Herein, a high-entropy strategy is employed to enhance the high-temperature infrared radiation property with a high emissivity above 0.9 at room temperature and 0.68 at 1200 °C across the entire range of wavelength (1–14 μm), and integrate a low thermal conductivity (<0.88 W m−1 K−1 at 1000 °C) and remarkable mechanical properties. High-entropy rare earth (RE) disilicates ((Y0.4Yb0.4Tm0.1Lu0.05Ho0.05)2Si2O7) ceramic coating with high lattice entropy has a more complex electronic structure, inducing lattice distortion and extra multi-mode vibrations, which boosts the emissivity in mid-infrared range (3–14 μm). Meanwhile, the high-entropy strategy prompts the formation of impurity energy levels as gap states, achieving optical absorption at low photon energies, and thus enhancing the emissivity in near-infrared range (1–3 μm). Simultaneously, (Y0.4Yb0.4Tm0.1Lu0.05Ho0.05)2Si2O7) ceramic coating owns diffusion-mediated thermal transport properties with strong phonon scattering, assisted further by the lamellar porous structure, thereby enabling a low thermal conductivity. The excellent mechanical properties ensure the reliability of the coating in extreme environments. All these merits render the high-entropy ceramic coating competitive for the development of high-temperature broadband high-emissivity thermal radiation materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call