Abstract

Single-phase multicomponent perovskite-type cobalt oxide containing five cations in equiatomic amounts on the A-site, namely, (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3, has been synthesized via the modified coprecipitation hydrothermal method. Using an original approach for heat treatment, which comprises quenching utilizing liquid nitrogen as a cooling medium, a single-phase ceramic with high configuration entropy, crystallizing in an orthorhombic distorted structure was obtained. It reveals the anomalous temperature dependence of the lattice expansion with two weak transitions at approx. 80 and 240 K that are assigned to gradual crossover from the low- via intermediate- to high-spin state of Co3+. The compound exhibits weak ferromagnetism at T ≤ 10 K and signatures of antiferromagnetic correlations in the paramagnetic phase. Ab initio calculations predict a band gap Δ = 1.18 eV in the ground-state electronic structure with the dominant contribution of O_p and Co_d orbitals in the valence and conduction bands, respectively. Electronic transport measurements confirm the negative temperature coefficient of resistivity characteristic to a semiconducting material and reveal a sudden drop in activation energy at T ∼ 240 K from Ea ∼ 1 eV in the low-temperature phase to Ea ∼ 0.3 eV at room temperature. The possibility of fine tuning of the semiconducting band gap via a subtle change in A-site stoichiometry is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.