Abstract

Propane dehydrogenation has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600 °C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt-Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEIs. The resultant HEI (PtCoCu) (GeGaSn)/Ca-SiO2 exhibited an outstandingly high catalytic stability, even at 600 °C (kd-1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed for 2 months for the first time. Detailed experimental studies and theoretical calculations demonstrated that the combination of the site-isolation and entropy effects upon multi-metallization of PtGe drastically enhanced the desorption of propylene and the thermal stability, eventually suppressing the side reactions even at high reaction temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call