Abstract

Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take the AMnSb2 (A = Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at the A site generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2 (denoted as A5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds. A5MnSb2 is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although both A5MnSb2 and AMnSb2 have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristine AMnSb2 evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov–de Haas oscillations measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call