Abstract

Protionic Ceramic Fuel Cells (PCFCs) are devices that efficiently convert chemical energy to electrical energy at low temperatures. Significant research efforts have been directed towards the development of cathodes with enhanced catalytic activity. In this work, a high-entropy approach was employed at the A site of La2NiO4+δ (LNO) with a Ruddlesden-Popper (R-P) structure, resulting in the synthesis of the LaPr0.2Sm0.2Ba0.2Sr0.2Ca0.2NiO4+δ (HE-LPSBSCN) cathode. A comprehensive series of tests demonstrated that this high-entropy strategy improved the oxygen reduction reaction (ORR) activity, hydration behavior, well operational stability, and electronic conductivity of LNO. The HE-LPSBSCN cathode demonstrated record-breaking performance, achieving a maximum power density of 2004 mW cm−2 at 700 °C. This finding provides novel insights for the rational design and optimization of highly catalytically active cathodes for PCFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.