Abstract

The results of an experimental investigation of high-enthalpy, hypersonic flow over sharp leading-edge compression corners are presented and discussed. In particular, the possible effects of real gas behavior are examined. Measurements have been made of the heat transfer and pressure distributions for flat plate and compression corner flow. Some flow visualization data have also been obtained. Test flows were generated using a free-piston shock tunnel operating in the reflected mode. The reservoir enthalpy ranged from 3 to 19 MJ kg -1 , giving freestream speeds of 2.3-5.5 km s -1 . For these conditions, the flow remains laminar throughout. The flat plate data for both high- and low-enthalpy flows are in agreement with the reference enthalpy method for heat transfer and the weak interaction theory for pressure. Also, the measured flat plate boundary-layer thickness compares well with an expression strictly valid for perfect gas flows only. The high- and low-enthalpy compression corner flows have upstream influence and plateau pressure behavior similar to perfect gas flow. That is, real gas effects for the present flows appear to be negligible. This is consistent with the essentially chemically frozen viscous and inviscid flow upstream of the interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call