Abstract

This paper analyses a system of two independent qubits off-resonantly coupled to a common non-Markovian reservoir at zero temperature. Compared with the results in Markovian reservoirs, we find that much higher values of entanglement can be obtained for an initially factorized state of the two-qubit system. The maximal value of the entanglement increases as the detuning grows. Moreover, the entanglement induced by non-Markovian environments is more robust against the asymmetrical couplings between the two qubits and the reservoir. Based on this system, we also show that quantum state transfer can be implemented for arbitrary input states with high fidelity in the non-Markovian regime rather than the Markovian case in which only some particular input states can be successfully transferred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.