Abstract

Two oppositely charged particles created within a microscopic space-time region can be separated, accelerated over a much larger distance, and brought to a recollision by a laser field. Consequently, new reactions become feasible, where the energy absorbed by the particles is efficiently released. By investigating the laser-dressed polarization operator, we identify a new contribution describing high-energy recollisions experienced by an electron-positron pair generated by pure light when a gamma photon impinges on an intense, linearly polarized laser pulse. The energy absorbed in the recollision process over the macroscopic laser wavelength corresponds to a large number of laser photons and can be exploited to prime high-energy reactions. Thus, the recollision contribution to the polarization operator differs qualitatively and quantitatively from the well-known one, describing the annihilation of an electron-positron pair within the microscopic formation region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.