Abstract
A comprehensive comparison of the dominant sources of radiation-induced blur for radiographic imaging system performance is made. End-point energies of 6, 10, 15, and 20 MeV bremsstrahlung photon radiation produced at the Los Alamos National Laboratory Microtron facility were used to examine the performance of large-panel cerium-doped lutetium yttrium silicon oxide (LYSO:Ce) scintillators 3, 5 and 10 mm thick. The system resolution was measured and compared between the various end-point energies and scintillator thicknesses. Contrary to expectations, it is found that there was only a minor dependence of system resolution on scintillator thickness or beam end-point energy. This indicates that increased scintillator thickness does not have a dramatic effect on system performance. The data are then compared to Geant4 simulations to assess contributions to the system performance through the examination of modulation transfer functions. It was determined that the low-frequency response of the system is dominated by the radiation-induced signal, while the higher-frequency response of the system is dominated by the optical imaging of the scintillation emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.