Abstract

We report full quantum reaction probabilities, computed within the framework of time-independent quantum mechanics using hyperspherical coordinates, for the 15N + 14N14N inelastic and reactive collision processes, restricted to total angular momentum J = 0, for kinetic energies up to 4.5 eV. We take advantage of the nonzero (i = 1) nuclear spin of 14N, leading to the existence of two nuclear spin isomers of 14N14N, namely, ortho- and para-14N14N, to restrict the study to the ortho molecular nitrogen species, with even rotational quantum number j = 0, 2, ... states. Specifically, we start with diatomic reagents ortho-14N14N in the initial rotational state j = 0. A comparison with similar works previously published by other groups using time-dependent wave packet and quasi-classical trajectory methods for the 14N + 14N14N fully symmetric collision is given. We find that reactive processes 15N + 14N14N involving atom exchange do not happen for collision energies less than 2.2 eV. Collisions at energies of around 2.0 eV are most effective for populating reactants' rovibrational states, that is, for inelastic scattering, whereas those at energies close to 5.0 eV yield a newly formed 14N15N isotopologue in a wide variety of excited vibrational levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call