Abstract

In this paper we show numerically that high-energy pulses can be obtained with a figure-eight Erbium-doped fiber laser with large normal net dispersion, and in which an anomalous-dispersion Nonlinear Optical Loop Mirror (NOLM) is used as the effective saturable absorber. One advantage of this configuration over the ring cavity is the possibility to adjust the length of the NOLM loop to avoid overdriving the saturable absorber. The ring section of the laser includes a bandpass filter to balance the combined effects of Kerr nonlinearity and normal dispersion. Strict polarization control is performed in the NOLM as well as in the ring section of the laser. The NOLM is a power-symmetric scheme whose switching relies on nonlinear polarization rotation. This architecture allows a precise control of the low-power NOLM transmission through the orientation of a quarter-wave retarder, whose adjustment is shown to be critical for stable pulsed operation. Pulse formation appears to depend critically on the filter width. If it is wide enough, ps pulses with a large positive linear chirp are produced. After dechirping outside the laser, nearly transform-limited pulses with durations down to 240 fs, energies up to 10 nJ and peak powers beyond 40 kW are predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.