Abstract

ABSTRACT The existence of high-energy astrophysical neutrinos has been unambiguously demonstrated, but their sources remain elusive. IceCube reported an association of a 290-TeV neutrino with a gamma-ray flare of TXS 0506 + 056, an active galactic nucleus with a compact radio jet pointing to us. Later, radio-bright blazars were shown to be associated with IceCube neutrino events with high statistical significance. These associations remained unconfirmed with the data of independent experiments. Here, we report on the detection of a rare neutrino event with the estimated energy of 224 ± 75 TeV from the direction of TXS 0506 + 056 by the new Baikal Gigaton Volume Detector (Baikal-GVD) in April 2021. This event is the highest energy cascade detected so far by the Baikal-GVD neutrino telescope from a direction below horizon. The result supports previous suggestions that radio blazars in general, and TXS 0506 + 056 in particular, are the sources of high-energy neutrinos, and opens up the cascade channel for the neutrino astronomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call