Abstract

In this work, the radiation responses of silicon photonic passive devices built in silicon-on-insulator (SOI) technology are investigated through high energy neutron and 60Co γ-ray irradiation. The wavelengths of both micro-ring resonators (MRRs) and Mach-Zehnder interferometers (MZIs) exhibit blue shifts after high-energy neutron irradiation to a fluence of 1×1012 n/cm2; the blue shift is smaller in MZI devices than in MRRs due to different waveguide widths. Devices with SiO2 upper cladding layer show strong tolerance to irradiation. Neutron irradiation leads to slight changes in the crystal symmetry in the Si cores of the optical devices and accelerated oxidization for devices without SiO2 cladding. A 2-µm top cladding of SiO2 layer significantly improves the radiation tolerance of these passive photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.