Abstract

This paper describes numerical and experimental heavy-ion charge collection studies using P/sup +/N junctions on epitaxial layers. The numerical simulations provide insights into the basic mechanisms contributing to transient currents and charge collection in devices on epitaxial layers. This paper also presents charge collection data from /spl sim/2 GeV /sup 127/I ions incident upon P/sup +/N junctions on both bulk silicon and epitaxial layers and compares the experimental data with the simulation results. The experimental data show that charge deposited below the epitaxial layer can be collected. This work is unique and important because this GeV-energy-range /sup 127/I ion more nearly represents a cosmic ray compared to lower energy, heavy-ions in the hundreds of MeV energy range. This paper also discusses the simulation results with respect to the experimental data and charge collection models for epitaxial transistors. Additionally, a shunting model is proposed to model the early transient current responses.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.