Abstract

BackgroundRapid application of external defibrillation, a crucial first-line therapy for ventricular fibrillation and cardiac arrest, is currently unavailable in the setting of magnetic resonance imaging (MRI), raising concerns about patient safety during MRI tests and MRI-guided procedures, particularly in patients with cardiovascular diseases. The objective of this study was to examine the feasibility and safety of defibrillation/pacing for the entire range of clinically useful shock energies inside the MRI bore and during scans, using defibrillation/pacing outside the magnet as a control.MethodsExperiments were conducted using a commercial defibrillator (LIFEPAK 20, Physio-Control, Redmond, Washington, USA) with a custom high-voltage, twisted-pair cable with two mounted resonant floating radiofrequency traps to reduce emission from the defibrillator and the MRI scanner. A total of 18 high-energy (200-360 J) defibrillation experiments were conducted in six swine on a 1.5 T MRI scanner outside the magnet bore, inside the bore, and during scanning, using adult and pediatric defibrillation pads. Defibrillation was followed by cardiac pacing (with capture) in a subset of two animals. Monitored signals included: high-fidelity temperature (0.01 °C, 10 samples/sec) under the pads and 12-lead electrocardiogram (ECG) using an MRI-compatible ECG system.ResultsDefibrillation/pacing was successful in all experiments. Temperature was higher during defibrillation inside the bore and during scanning compared with outside the bore, but the differences were small (ΔT: 0.5 and 0.7 °C, p = 0.01 and 0.04, respectively). During scans, temperature after defibrillation tended to be higher for pediatric vs. adult pads (p = 0.08). MR-image quality (signal-to-noise ratio) decreased by ~ 10% when the defibrillator was turned on.ConclusionsOur study demonstrates the feasibility and safety of in-bore defibrillation for the full range of defibrillation energies used in clinical practice, as well as of transcutaneous cardiac pacing inside the MRI bore. Methods for Improving MR-image quality in the presence of a working defibrillator require further study.

Highlights

  • Rapid application of external defibrillation, a crucial first-line therapy for ventricular fibrillation and cardiac arrest, is currently unavailable in the setting of magnetic resonance imaging (MRI), raising concerns about patient safety during MRI tests and MRI-guided procedures, in patients with cardiovascular diseases

  • Rapid application of external defibrillation in patients experiencing ventricular fibrillation (VF) or cardiac arrest in the MRI setting is currently impossible, because commercially available external defibrillators cannot be used in the MRI environment [11]

  • All animals were handled in compliance with National Institutes of Health and institutional guidelines according to a protocol that was approved by the Institutional Animal Care and Use Committee of the University of Iowa

Read more

Summary

Introduction

Rapid application of external defibrillation, a crucial first-line therapy for ventricular fibrillation and cardiac arrest, is currently unavailable in the setting of magnetic resonance imaging (MRI), raising concerns about patient safety during MRI tests and MRI-guided procedures, in patients with cardiovascular diseases. Rapid application of external defibrillation in patients experiencing ventricular fibrillation (VF) or cardiac arrest in the MRI setting is currently impossible, because commercially available external defibrillators cannot be used in the MRI environment [11] In such situations the patient is removed from the bore, disconnected from the MRI coils and other equipment, and moved to another room, where the defibrillation pads are attached to the patient’s chest and the defibrillator is turned on, passes its internal diagnostic tests, and checks the impedance between the patient’s skin and defibrillation pads. Due to patient-safety concerns, those at risk for life-threatening arrhythmias, including patients with acute ischemia, severe heart failure, hemodynamic instability, or implanted devices, cannot receive MRI tests or MRI-guided interventions [11, 13,14,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call