Abstract

Making use of the Stochastic Vacuum Model and the gluon gauge-invariant two-point correlation function, determined by numerical simulation on the lattice in both quenched approximation and full QCD, we calculate the elementary (quark–quark) scattering amplitudes in the momentum transfer space and at asymptotic energies. Our main conclusions are the following: (1) the amplitudes decrease monotonically as the momentum transfer increases; (2) the decreasing is faster when going from quenched approximation to full QCD (with decreasing quark masses) and this effect is associated with the increase of the correlation lengths; (3) dynamical fermions generate two components in the amplitude at small momentum transfer and the transition between them occurs at momentum transfer near 1 GeV2. We also obtain analytical parametrizations for the elementary amplitudes, that are suitable for phenomenological uses, and discuss the effects of extrapolations from the physical regions investigated in the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.