Abstract

Energy-filtering transmission electron microscopy (TEM) and bright-field TEM can be used to extract local sample thickness $t$ and to generate two-dimensional sample thickness maps. Electron tomography can be used to accurately verify the local $t$. The relations of log-ratio of zero-loss filtered energy-filtering TEM beam intensity ($I_{{\rm ZLP}}$) and unfiltered beam intensity ($I_{\rm u}$) versus sample thickness $t$ were measured for five values of collection angle in a microscope equipped with an energy filter. Furthermore, log-ratio of the incident (primary) beam intensity ($I_{\rm p}$) and the transmitted beam $I_{{\rm tr}}$ versus $t$ in bright-field TEM was measured utilizing a camera before the energy filter. The measurements were performed on a multilayer sample containing eight materials and thickness $t$ up to 800 nm. Local thickness $t$ was verified by electron tomography. The following results are reported:•The maximum thickness $t_{{\rm max}}$ yielding a linear relation of log-ratio, $\ln ( {I_{\rm u}}/{I_{{\rm ZLP}}})$ and $\ln ( {I_{\rm p}}/{I_{{\rm tr}}} )$, versus $t$.•Inelastic mean free path ($\lambda _{{\rm in}}$) for five values of collection angle.•Total mean free path ($\lambda _{{\rm total}}$) of electrons excluded by an angle-limiting aperture.•$\lambda _{{\rm in}}$ and $\lambda _{{\rm total}}$ are evaluated for the eight materials with atomic number from $\approx$10 to 79.The results can be utilized as a guide for upper limit of $t$ evaluation in energy-filtering TEM and bright-field TEM and for optimizing electron tomography experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call