Abstract

AbstractThe facile hydrothermal synthesis of a patronite VS4/single‐walled carbon nanotube/reduced graphene oxide hybrid is reported. Detailed electrochemical investigations of the hybrid revealed an exceptionally high energy density of ca. 174 W h/kg. A comparison of this value with those of other supercapacitor electrodes based on metal sulfides and also some with high energy‐density values revealed the potential of the patronite hybrid as a fitting candidate for possible application in energy‐storage devices. Charge–discharge stability measurements showed the excellent specific capacitance of the hybrid, which has a retention capability of ca. 97 % after 1000 continuous charge–discharge cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.