Abstract

In this work, the high-energy-density plasmas (HEDP) evolved from joule-class-femtosecond-laser-irradiated nanowire-array (NWA) targets were numerically and experimentally studied. The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma, contributing most to the high energy densities. The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur. We give the electron and ion energy densities for broad target parameter ranges. The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets, and the volume of the HEDP was several-fold greater. At optimal target parameters, 8% of the laser energy can be converted to confined protons, and this results in ion energy densities at the GJ/cm3 level. In the experiments, the measured energy of the emitted protons reached 4 MeV, and the changes in energy with the NWA’s parameters were found to fit the simulation results well. Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of (24 ± 18) × 106/J from deuterated polyethylene NWA targets also confirmed these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call