Abstract

NiCo2S4/CNTs (NCS/CNTs) hybrid nanostructures have been synthesized by a facile one-step solvothermal method with varying content of CNTs. The structure and morphology of the synthesized NCS/CNTs hybrid revealed the formation of platelets anchored on the CNT matrix. When evaluated as electrode materials for supercapacitor, the as-synthesized NCS/CNT-1 hybrid (with 1% of CNT) manifested remarkable specific capacitance of 1690[Formula: see text]F[Formula: see text]g[Formula: see text] at the current density of 5[Formula: see text]A[Formula: see text]g[Formula: see text]. More importantly, an asymmetric supercapacitor (ASC) assembled based on NCS/CNT-1 as positive electrode and carbon nanotube paper (CNP) as a negative electrode delivered high energy density of 58[Formula: see text]Wh[Formula: see text]kg[Formula: see text] under power density of 8[Formula: see text]kW[Formula: see text]kg[Formula: see text]. Furthermore, the ASC device exhibited high cycling stability and 77.7% of initial specific capacitance retention after 7000 charge–discharge cycles at a current density of 8[Formula: see text]A[Formula: see text]g[Formula: see text]. The large enhancement in the electrochemical performance is attributed to the benefits of the nanostructured architecture, including good mechanical stability, high electrical conductivity as well as buffering for the volume changes during charge–discharge process. These convincing results show that NCS/CNTs hybrid nanostructures are promising electrode materials for high energy density supercapacitors (SCs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call