Abstract

AbstractSurvival of the production target in successive experiments (with a repetition rate of 1 Hz) over an extended period of time is one of the key problems encountered in designing the Super-FRS (Superconducting Fragment Separator) at the future Facility forAntiprotons and Ion Research (FAIR). Because of the difficulties involved in construction of a liquid jet metal target, it is highly desirable to employ a solid production target at the Super-FRS. However, with the high beam intensities that will be available at the FAIR, the production target may be destroyed in a single experiment due to high specific energy deposition by the beam in the target material. The level of specific energy deposition can be reduced to an acceptable value by increasing the beam focal spot area. However, the spot size is limited by requirements of achieving good isotope resolution and sufficient transmission of the secondary beam through the system. The resolving power of the fragment separator is inversely proportional to the X-dimension of the focal spot whereas the transmission depends on Y-dimension only. It has been previously shown [Tahir et al., 2005c] that an elliptic focal spot with appropriate dimensions, will fulfill the above two conditions simultaneously and will also have a large enough area to reduce the specific energy deposition to an acceptable level for certain beam intensities of interest. In this paper we present numerical simulations of thermodynamic and hydrodynamic behavior of a solid graphite target that is irradiated by 1 GeV/u uranium beam in the intensity range of 1010 –1011 ions per bunch with a bunch length = 50 ns. These simulations have been carried out using a three-dimensional computer code, PIC3D, that includes elastic-plastic effects. This theoretical work has shown that up to a beam intensity of 1011 ions/bunch, one can employ a solid target while for higher intensities the target will be destroyed due to thermal stresses induced by the beam. It has also been found that a circular focal spot leads to minimum thermal stresses as it generates minimum pressure gradients compared to an elliptic focal spot, for the same specific energy deposition. Moreover, the stress level increases with an increase in the ellipticity of the focal spot. It is therefore recommended that one should use a circular focal spot for lower intensities provided that the criteria for isotope resolution and transmission are fulfilled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call