Abstract

Ballistic electron emission microscopy (BEEM) is a three terminal extension of scanning tunneling microscopy and yields topographic and spectroscopic information on high-energy electron transport in semiconductors at nm-resolution. In BEEM on GaAs–AlGaAs double barrier resonant tunneling diodes (DBRTDs) ballistic electrons which tunnel through a resonant state inside the DBRTD result in a characteristic linear behavior in the BEEM spectrum. On DBRTDs nanostructured into narrow quantum wires, however, this tunneling is quenched for electron energies below the AlGaAs barrier heights. This quenching of the ballistic current can be explained in terms of a transfer Hamiltonian formalism applied to tunneling processes between electron systems of different dimensionality. We measured BEEM spectra on InAs self-assembled quantum dots (SAQDs) for positions on the dots and for “off-dot” regions on the so-called InAs wetting layer. From these data, we determined the local InAs–GaAs band offsets on the dots and on the wetting layer and investigated the temperature dependence of the InAs–GaAs barrier height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.