Abstract
To search excellent catalyst for electrocatalytic nitrogen reduction reaction (eNRR) is of great importance for the alternative to the traditional Haber-Bosch process. Herein, based on density functional theory (DFT) calculations, we systematically investigated the catalytic mechanism of eNRR on different-proportions high-entropy alloy (HEA) FeCoNiCuPd. The calculation of formation energy shown the dependence of structural stability on the ratio of constituents. Meanwhile, it is found that Ni0.3(FeCoCuPd)0.175 features high thermal stability. The Ni0.3(FeCoCuPd)0.175 with exposed crystal plane (111) exhibited excellent performance of eNRR with the lowest overpotential of 0.34 eV. Catalytically kinetic results demonstrated that Ni0.3(FeCoCuPd)0.175 follows the distal reaction pathway and the rate-determining step (RDS) was found to be *N2 →*NNH with the barrier of 0.50 eV. Relative to the secondary reaction of hydrogen evolution reaction (HER), such catalyst achieves the excellent selectivity of 99%. Detailed electronical calculations results indicated the connection between catalytic activity and d-band center, shedding light on the critical role of Ni element ratio in the catalytic performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.