Abstract
Electrically conductive composites with very low percolation threshold values and high elastic modulus have been developed using single-screw extruder from short E-glass fiber (GF) reinforced carbon black (CB) filled high-density polyethylene (HDPE). The percolation threshold values of composites decreased with increased content of GF. The elastic modulus, tensile strength, and impact strength of composites were improved after addition of GF into CB/PE (PE, polyethylene). Three coupling agents, namely glycidyl methacrylate-grafted ethylene copolymer, maleic anhydride-grafted PE, and maleic anhydride-grafted polypropylene were used to study the effect on the conductivity and mechanical properties of GF/CB/PE composites. The tensile strength and modulus of composites increased after addition of coupling agent, meanwhile the conductivity of composites were decreased. The interface strength between GF and PE was improved after addition of coupling agent. The images of scanning electronic microscope showed that coupling agent improved the bonding between GF and matrix in an effective manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.