Abstract

This study investigated the improvement of the electro-optical properties of a liquid crystal (LC) cell fabricated through brush coating using graphene oxide (GO) doping. The physical deformation of the surface was analyzed using atomic force microscopy. The size of the groove increased as the GO dopant concentration increased, but the direction of the groove along the brush direction was maintained. X-ray photoelectron spectroscopy analysis confirmed that the number of C-C and O-Sn bonds increased as the GO concentration increased. Since the van der Waals force on the surface increases as the number of O-metal bonds increases, we were able to determine why the anchoring energy of the LC alignment layer increased. This was confirmed by residual DC voltage and anchoring energy measurements that were later performed. As the GO concentration increased, the width of the hysteresis curve decreased, indicating that the residual DC voltage decreased. Additionally, the 15% GO-doped sample exhibited a significant increase in its anchoring energy up to 1.34 × 10-3J/m2, which is similar to that of rubbed polyimide. It also secured a high level of electro-optical properties and demonstrated potential as a next-generation thin-film display despite being produced via a simple brush-coating process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.