Abstract

Elastic strain provides a direct means to tune a material’s electronic structure from both computational and experimental vantage points and can thus provide insights into surface reactivity via changes induced by electronic structure shifts. Here we investigate the role of elastic strain on the catalytic activity of tungsten carbide (WC) in the hydrogen evolution reaction. WC makes an interesting material for such investigations as it is an inherently promising catalyst that can sustain larger elastic strains (e.g., −1.4 to 1.4%) than common transition-metal catalysts, such as Pt or Ni (e.g., −0.4 to 0.4%). On the basis of density functional theory calculations, a compressive uniaxial strain is expected to cause weakening of the surface–hydrogen interaction of 10–15 meV per percent strain, while a tensile strain is calculated to strengthen the surface–hydrogen interaction by a similar magnitude. Sabatier analysis suggests that weakening of the surface-hydrogen interaction would enhance catalysis. We prep...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.