Abstract

Graphene is one of the most attractive two-dimensional materials that can be used for efficient desalination due to its ideal physical properties and high performance in ion selectivity and salt rejection. Here, in this paper, molecular dynamics simulations were applied to investigate the possibility of using a parallel nanopore system to pump ions so that the ions of both cation and anion species in the middle compartment could be evacuated at an extremely rapid rate. By building hexagonal parallel single-layer graphene films with spacing of 3.0 nm and changing the pore numbers and surface charge densities of the nanopores, the efficiency of desalination could be well controlled. It is found that the ion concentration decreases exponentially with time. The more the number of nanopore is, the stronger the surface charge density of nanopore is, the evacuation of ions in the middle compartment is more obvious, offering a new means for controlling the desalination efficiency. The simulations performed here provide theoretical insights for designing and fabricating high efficient and less energy consumption graphene desalination devices in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call