Abstract

The vast discharge of methylene blue (MB) dye in industrial effluent, risks the ecological environment, thus making its removal unavoidable. Recently, metal organic frameworks (MOFs) due to their larger pore volume, surface area and easy synthesis have proved to be exceptionally promising materials for contaminant treatment. Based on 1,3,5-benzenetricarboxylic acid (BTC) as a modifier, a new composite material consisting of BTC and Zr-based MOF (UIO-66-BTC) was fabricated for the effective removal of MB from the effluent. Its synthesis and efficient application has been confirmed by characterization analysis. The influencing factors, adsorption isotherms, and adsorption kinetics of MB adsorption by adsorbent were studied. It was demonstrated that the removal rate of MB adsorption by UIO-66-BTC reached 98.45% and the adsorption amount reached 393.80 mg g−1 at temperature (298 K), pH 7, adsorbent dosage (0.5 g L−1), MB initial concentration (200 mg L−1), and contact time of 720 min, respectively. The maximum adsorption of MB by UIO-66-BTC was 20.827 times higher than that of UIO-66 (18.908 mg g−1). The experimental data fits with the pseudo-second-order kinetic model and Langmuir isotherm, implying that the adsorption process is a monolayer chemisorption process. The thermodynamic and regeneration experiments showed that the spontaneous process enhanced the adsorption of MB at lower temperatures and the adsorption efficiency of MB remained above 68% after five successive cycles. The mechanism of MB adsorption on adsorbents is mainly based on electrostatic interactions, pore filling, hydrogen bonding and π-π interactions. It is concluded that this new adsorbent can be effectively used to treat MB in effluents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call