Abstract

In this work, magnetic di-thio functionalized mesoporous silica nanoparticles (DT-MCM-41) were prepared by grafting dithiocarbamate groups within the channels of magnetic mesoporous silica nanocomposites. The functionalized nanoparticles exhibited proper magnetic behavior. They were easily separated from the aqueous solution by applying an external magnetic field. The results indicated that the functionalized nanoparticles had a potential for high-efficient removal of Hg(2+) in environmental samples. The maximum adsorption capacity of the sorbent was 538.9 mg g(-1), and it took about 10 min to achieve the equilibrium adsorption. The resulted adsorption capacity was higher than similar works for adsorption of mercury. It can be due to the presence of di-thio and amine active groups in the structure of sorbent. The special properties of MCM-41 like large surface area and high porosity also provided a facile accessibility of the mercury ions into the ligand sites. The complete removal of mercury ions was attained with dithiocarbamate groups in a wide range of mercury concentrations. The recovery studies were also applied for the river water, seawater, and wastewater samples, and the values were over of 97 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call