Abstract

Abstract The current artificial photocatalysts often suffer from photocorrosion-induced irreversible damage and low efficiency. Here we report that under the UV irradiation of aqueous isopropanol solution, which photolysis to produce acetone and consume photoelectron in time and be oxidized to form acetone. And then the platinum nanoparticles can coordinate with product acetone on their surfaces to create a unique photocatalysis system for high efficient hydrogen evolution. In this system, the inherent close bonding between photoactive surface complexes and metallic platinum sites creates an efficient donor-acceptor system for charge transfer and leads to high efficiency, with hydrogen generation rate of 8.01 mmol⋅ h−1. Furthermore, in the presence of isopropanol the photoactive acetonyl-platinum complexes are generated reproducibly via a continuous isopropanol-to-acetone conversion and thus work sustainably. This finding indicates the possibility of artificially creating self-reproducible systems to drive photocatalytic reactions efficiently and robustly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.