Abstract

We design a new nanofocusing lens for far-field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, which is modulated by the dielectric grating from the near field to the far field. The principle of designing such a far-field nanofocusing lens is elucidated in details. The numerical simulations demonstrated that nanoscale focal spot (0.12λ2) can be realized with 3.6λ in depth of focus and 4.5λ in focal length by reasonably designing parameters of the grating. The focusing efficiency can be 7.335, which is much higher than that of plasmonic microzone plate-like lenses. A blocking chip can enhance the focusing efficiency further as the reflected waves at the entrance would be recollected at the focus. By controlling the number of the grooves in the grating, the focal length can be tuned easily. This design method paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical measurement, and sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.