Abstract

Titanium dioxide (Titania) nanoparticle-coated biochar derived through co-pyrolysis of COVID-19 waste face mask (WFM) and Moringa oleifera seed cake (MO) provides an effective way to alleviate toxic metal in wastewater. This study investigates the effects of Biochar/titania photocatalyst preparation, characterization, and its photoreduction of Cr(VI). The morphological and functional modifications in the catalyst were identified using X-Ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet spectrophotometer, surface area analysis, and Raman spectrophotometer, respectively. The influencing parameters, namely, pH, photocatalyst dosage, initial pollutant concentration, and visible light irradiation time, have been investigated. The findings reveal that the Cr(VI) reduction by the photocatalyst was highly facilitated by photocatalytic process. The prepared photocatalyst shows higher and faster reduction rate of Cr(VI) and also improves the catalyst stability. The photoreduction of Cr(VI) ensembles well with pseudo-first order kinetics. At 180 min of reaction time, maximum Cr(VI) reduction of 98.65% was achieved at pH 2, 0.3 g/L catalyst dosage, and 10 ppm initial concentration, respectively. The synthesized photocatalyst shows excellent recycling performance up to 7 times, and these studies proved that the prepared catalyst is cost-effective and efficiently employed for removing pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call